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The prototype linear spin-up problem consisting of a homogeneous viscous 
electrically conducting fluid confined between two infinite flat rotating electrically 
conducting plates in the presence of an applied axial magnetic field is studied in 
an effort to understand better the strength and nature of the coupling between 8 

fluid and its rotating conducting container. It is assumed that the response time 
of the bounding plates to a magnetic perturbation is much less than the fluid 
spin-up time and that the plate conductivity is an arbitrary function of distance 
from the fluid-plate interface. The general Laplace transform solution is in- 
verted and discussed for three special cases: magnetic diffusion regions thick 
compared with fluid depth during spin-up, arbitrary magnetic field strength and 
boundary conductance; magnetic diffusion regions thin, weak conductance, 
arbitrary field; magnetic diffusion regions thin, strong conductance, arbitrary 
field. In  each case conductance of the boundary strengthens the coupling between 
fluid and boundary, thereby decreasing the spin-up time. The corresponding 
single plate analysis of Loper ( 1 9 7 0 4  is found to predict spin-up accurately only 
if the boundary conductance is much smaller than that of the fluid. The fluid 
possesses an oscillatory mode of spin-up if the magnetic diffusion regions are 
thin and boundary conductance is large. That is, the inviscid current-free core of 
fluid rotates significantly faster than the boundaries during a portion of the spin- 
up process. 

1. Introduction 
The spin-up of a. fluid contained between two infinite flat rotating plates is a 

prototype for a large class of motions of contained fluids. The linearized spin-up 
of an incompressible viscous fluid was successfully analysed by Greenspan & 
Howard (1963), yielding the spin-up time for the fluid and elucidating the role of 
the Ekman layers and secondary flow in the spin-up process. 

Loper & Benton (1970) generalized the work of Greenspan & Howard (1963) 
by considering the linear spin-up of an electrically conducting fluid bounded 
by two infinite flat rotating electrically insulating plates in the presence of an 
applied magnetic field. They found that I hydromagnetic effects strengthen the 
coupling between fluid and boundary; the spin-up time decreases with increasing 
magnetic field strength. In addition, they clarified the role of the Ekman- 
Hartmann boundary layers and the magnetic diffusion regions in the spin-up 
process. 
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The present analysis is motivated by a desire to understand better the strength 
and nature of the coupling between a rotating electrically conducting fluid 
and its electrically conducting boundaries. To this end, a prototype linear 
hydromagnetic spin-up problem is investigated wherein a homogeneous electric- 
ally conducting fluid is bounded axially by two electrically conducting plates 
in the presence of an applied axial magnetic field. Whereas in the insulating plate 
analysis of Loper & Benton (1970) electric currents are confined to the Ekman- 
Hartmann layers and magnetic diffusion regions, in the present analysis, 
currents may flow within the plates also. It is seen below that such currents 
have the effect of increasing the strength of coupling between fluid and boundary. 
(For a detailed discussion of the character of and interactions between the various 
regions of the flow, the reader is referred to Loper (1970b).) 

Greenspan & Howard (1963) demonstrated the success of the boundary-layer 
approach in analysing the spin-up problem; i.e. that Ekman suction found from 
a single plate analysis can be applied to an inviscid layer of fluid to yield the spin- 
up time for the two plate problem. Loper & Benton (1970) found the boundary- 
layer approach to be valid in the insulating plate problem, regardless of the thick- 
ness of the magnetic diffusion regions. In his analysis of the steady boundary 
layer on a single conducting flat boundary, Loper ( 1 9 7 0 ~ )  obtained a spin-up 
time for the corresponding two plate problem by assuming the boundary-layer 
approach to be valid for conducting boundaries. It is seen below that this 
approach is successful for the conducting plate problem only if the plate con- 
ductance is much less than that of the fluid. 

In  $2, the problem is linearized with respect to Rossby number, AQ/Q = E ,  

and simplified by assuming $he response time of the boundaries to a magnetic 
perturbation is much less than the spin-up time of the fluid. The resulting four 
parameter problem is solved in the Laplace transform plane. It is found that the 
finite conductance of the contained fluid removes the singularity (as plate con- 
ductance becomes large) found by Loper (1970a) in the corresponding single 
plate analysis. The general solution obtained in $2 is simplified and inverted in 
$$3 and 4 by assuming the magnetic diffusion regions to be thick and thin, 
respectively, compared with the fluid depth during spin-up. In  each case, con- 
ductance of the boundaries acts to strengthen the coupling between fluid and 
boundaries, thereby decreasing the spin-up time. This strengthening may be 
explained by the fact that electric current loops circulating between the con- 
ducting boundaries and magnetic diffusion regions act in the same sense as those 
circulating between the Ekman-Hartmann layers and magnetic diffusion 
regions. Also, in each case, the finite conductance of the fluid becomes important 
and significant deviations from the behaviour predicted by Loper ( 1 9 7 0 ~ )  
occur if C, 2 O(C,), where C, and C, are conductance of boundary and fluid 
respectively. In  $4, a new oscillatory mode of spin-up is found to occur when the 
plate conductance is sufficiently strong. 
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2. Formulation and general solution 
Consider an incompressible viscous fluid of constant electrical conductivity 

uf filling the gap of width 2cl between two infinite flat plates of arbitrary electrical 
conductivity up (2). With the axial co-ordinate z measured from the mid depth, 
crp (2) is defined only for d < IzJ < 00. To preserve the symmetry of the problem 
about the plane z = 0, assume up is an even function of z .  At time zero, the fluid 
is in rigid body rotation with angular speed SZ, the plates co-rotate in the same 
direction with speed SZ(l+e), where 161 < 1, and a uniform magnetic field of 
strength B, is imposed everywhere normal to planes z = constant (see figure 1). 
This initial-value problem is a direct extension of the non-magnetic analysis of 
Greenspan & Howard (1963) and of the insulating plate analysis of Loper & 
Benton (1970) and includes those analyses as special cases. As in those papers, 
attention is focused upon the time needed for the fluid to spin up to the speed of 
the plates as well as upon the manner in which the spin-up is accomplished. 

A A  I Q 2 , B , 2  

Rotation rate Rigid electrically 
at t = O :  conducting plate up(z) 

/n(l+t)  / / 
A 

Electrical*y 
= constant a 2d conducting 

fluid 

I 

Rigid electrically 
conducting plate up= up(z) 

FIGURE 1. Schematic depiction of configuration and initial conditions. 

The equations governing the velocity v, pressure n and magnetic field B 
within the fluid may be non-dimensionalized and combined by use of complex 
notation following Loper & Benton (1970) to yield (27) and (28) of that analysis. 
Similarly, the magnetic field within the plates may be expressed as 

Bp(r ,  2, t )  = Bo2+ B O ~ u f t ( ~ ~ ) ~ € [ r A ~ ( ~ , 7 ) 8 + r B ~ ( 5 ,  7P+dCp(6, 7)21, (1) 

where 
m 

7 = Qt, 6 = z/L, L = u,'(d)/ u p ( z ) d z ,  
a 
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r, t ,  p and Y are, respectively, dimensionless time, dimensionless axial co-ordinate, 
length scale within the plates, radial co-ordinate, time, magnetic permeability, 
and kinematic viscosity. Introduction of complex notation 

where 77, V ,  A ,  B and 6 are, respectively, dimensionless radial velocity, azimuthal 
velocity, radial field, azimuthal field and z/d allows the linearized problem to be 
expressed as 

FT-EF,,g+2iF = 2a2E*MC-P(~), (3) 

6M,  - EM,, = E )  Fg, (4) 

u2RN., - gN,g+ rgN, = 0, 
with conditions 

where 

a = B, (af/2pQ)* = magnetic interaction parameter, 

6 = crfp = magnetic Prandtl number, 

E = v/Qd2 = Ekmannumber, 

9 = (Q/v )h- l  

R = pLaa;l (d) [Id* op (z)dz]' = magnetic Reynolds number, 

rp (z)dx = conductance ratio, 
Id* 

and 4 5 )  = g;1(4ap(4. 

The magnetic Reynolds number R is a measure of the response time of the 
magnetic field within the plates. In  order not to obscure the spin-up dynamics 
unnecessarily, it is assumed that this response time is much shorter than the 
spin-up time, i.e. 

R < r,, (6) 

where rS is the spin-up time. This approximation is very good for a typical 
laboratory experiment but is marginal (i.e. R w 7,) for the interior of the earth. 
The influence of the response time of the magnetic field upon the spin-up time 
has been investigated by Loper ( 1970 b )  . 

With assumption ( 6 )  the five parameter problem defined above reduces to a 
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four parameter problem. What is more, one dependent variable [N(g, T ) ]  may be 
eliminated from direct consideration, yielding a much simpler set of equations. 
If the unsteady term in ( 5 )  is neglected, that equation may be directly integrated 
for an arbitrary function ~ ( e )  to yield 

where M,, ( T )  is the value of M (and N )  a t  
reduces to (3) and (4) subject to conditions 

= + d/L, 6 = + 1. The problem now 

F(& 0) = M ( &  0) = 0, F( L- 1,T) = i, 

Re [I: F ( [ , ~ ) d 5 ]  = 0, M (  f 1, T )  = T E*q5Mc(? 1,7). 

In  the limit 01 --f 0, the prototype spin-up problem of Greenspan & Howard 
(1963) is recovered while the limit q5 + 0 yields the insulating plate problem of 
Loper & Benton (1970). 

The Laplace transform of (3) and (4) together with the above conditions yields 

EFc,-(2i+s)F = -2a2E*Bc+P(s), (8) 

EBcc - SSB = - E*Fc, (9) 
subject to 

P (  & 1, s) = ijs, B( 1, s )  = T E*@Ec( & 1, s), Re[/iB([,s)dc] = 0. 

The solutions for p, B, 3 and i" which satisfy (7), (8) (9) and the appropriate 
boundary and initial conditions are 

F ( [ ,  s) = ~ [fjO - 78j + [ E t 6 -  +j] [ (2i + s - m2) (1 + q5m coth [mE-*I) 
i(s - 2i) 2i 
SD 

sinh (mE-*) 
x k  'Osh (IcE-*') - (2i + s - k2) (1 + #Ic coth [kEA])  wz 

sinh ( k E 4 )  

sinh (kE-* 6) 
sinh (kE-*) 

2i 
D B(c, 8) = -- ( ~ + 2 i ) [ E A O - f j ]  (1+$m coth[mE-*]) 

- (1 + q5k coth [IcE-*]) 
sinh (mE4)  

2iq5 B(<, s) = sgn(6)- (~+2i)[E~6-fj][kcoth(kE-*)-mcoth(mE-*)] D 
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where D = 2sE-W-  (S + 2i)Bij - (S - 2i)#7, (14) 

0 = k(s + 2i - m2) coth(kE-4) - m(s + 2i - k2) Goth (vLE-)) 

+ q5km(k2 - m2) coth (kE-*) coth(mEa), (15) 

7 = k2-mz+q5m(s+2i-m2)coth (mE-*)-q5k(s+2i-k2)coth(kE3),  (16) 

12 = *(s+2i+2a2+6s), (191 

4 2  = Ss(s+ 2i) (20) 

and a tilde indicates a complex conjugate with s regarded as real. 
Inspection of these solutions reveals that they are meromorphic; that is, 

branch cuts do not contribute to the inversion. Contributions to the inversions of 
(lo)-( 13) come from a pole at  s = 0,  representing the final steady state, and from 
zeros of the function D. It is anticipated that, at  least for a limited range of the 
parameters, there is an isolated zero of D on the negative real axis representing 
the spin-up mode. (For other values of the parameters, a pair of conjugate 
spin-up poles may exist.) The inversion of the residues of these two poles (i.e. 
steady pole at s = 0 and spin-up pole) is of primary interest. In addition, two 
pairs of conjugate sequences of zeros of D, representing inertial oscillations, 
AlfvBn waves and boundary-layer formation, are anticipated. These poles will 
be ignored when possible (as in $3)  or approximated by a branch cut when 
necessary (as in 94). 

In the case of a single conducting plate (Loper 1970a) the limit q5 -+ co is 
singular, with the result that the analysis predicts magnetic perturbations of 
infinite amplitude and instantaneous spin-up of the corresponding confined 
fluid. Inspection of (10)-(20) reveals that no such singularity occurs in the 
corresponding analysis of the case of two conducting plates; magnetic perturba- 
tions remain finite as q5 + co and, as will be seen below, spin-up is not instant- 
aneous. This contradiction may be clarified as follows. In  the limit # + co, the 
plate acts as a perfect conductor and the imposed magnetic field is ‘frozen in’ 
(see Cowling 1957). At the same time, for the single plate configuration the semi- 
infinite extent of fluid also acts as a perfect conductor and forces the magnetic 
field to rotate with it. Since the semi-infinite fluid never spins up, the differential 
rotation steadily twists the imposed field into the azimuthal direction resulting 
in an azimuthal field which grows without bound. The singularity does not 
appear in the two plate problem for two reasons. First, conductance of the 
contained fluid (2da f )  is finite (the field lines can slip through the fluid) and 
second, the fluid itself spins up so that the differential rotation which causes the 
twisting does not last indefinitely. It is seen below that an important measure of 
plate conductance for the spin-up problem is 
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In  physical terms, q5Ei is the ratio of the conductance of the plates to that of the 
entire fluid (q5 itself measures plate conductance with respect to the conductance 
of a layer of fluid one Ekman depth in thickness). When q5E* 2 O ( l ) ,  the finite 
conductance of the  fluid becomes important and significant deviations from the 
behaviour predicted by the single plate analysis of Loper (1970a) occur. 

The original five parameter problem has been reduced to a four parameter 
problem by virtue of assumption (6). Ranges of interest for the remaining 
parameters are E < 1 ,6  < 1 ,  and a and q5 arbitrary. In  order to reduce the four 
parameter problem effectively to a two parameter problem wherein a and q5 are 
ordered with respect to E ,  attention will be restricted to the two extremes of 
magnetic diffusion regions thick during the spin-up phase (in $3) and thin 
during the spin-up phase (in $4). 

3. Magnetic diffusion regions thick during spin-up 
If a is not too large, the magnetic diffusion regions grow at the resistive 

diffusion rate, given in dimensionless terms as 6 = ~4E)d-k If  the magnetic 
Prandtl number 6 is sufficiently small that 

6 < r,E, ( 2 1 )  

where T~ is the spin-up time, the magnetic diffusion regions diffuse across the 
fluid much more quickly than the fluid spins up and these regions are thick 
during the spin-up phase. This allows the time development of the magnetic 
diffusion regions to be ignored. In mathematical terms, all poles produced by 
zeros of D associated with coth (mE-4) and coth(fiE4) may be neglected. Pro- 
vided that E < 1 and that the spin-up pole is not located near s = & 2i - 2a2, 
the following simplified expressions for the fluid velocity variable F(<, s) and the 
perturbation magnetic field at the fluid-plate interface are obtained. 

where 

and k,5 = (2i+2012+s)k ( 2 5 )  

Note that this simplified solution for F still satisfies all the prescribed initial 
and boundary conditions and also yields the anticipated final value, F(6, a) = i .  

The inversion of F from (22) has contributions from the steady pole and the 
spin-up pole, which are the primary concern here, and from branch cuts repre- 
senting boundary-layer formation and inertial oscillations, which will be 
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neglected. With E < 1, it may be seen from (24) that a zero of .A occurs close to 
s = - 2a2$E*( 1 + $E*)-l. It ia easily verified that the zero which yields the spin- 
up pole is in fact located a t  

correct to order E*, where 

The function h is a generalization of the function /3 = 

(27 )  

[a2 + (1 + a4)*]* which 
appears in the insulated plate analysis. The location of the spin-up pole may be 
checked in several limits: 

(a) If  a = 0,  sP = - E* in agreement with Greenspan & Howard (1963). 
( b )  If $ = 0 ,  sP = -PE& in agreement with Loper & Benton (1970). 
( c )  If $E* < 1, sp = - Ei(/3+ 2a24) in agreement with Loper (1970a). 

In  the limit of highly conducting plates ($E* 9 1 + a2) the location of the spin- 
up pole becomes independent of the plate conductivity: 

lim s P = -2aZ-Ea. 
$-+ m 

In  this limit, the finite resistivity of the fluid (due to the finite depth) acts to 
limit the flow of electrical current, thus giving a finite value, in contrast to the 
approximate calculation of Loper (1970a) (valid for $E* < 1) which predicts 
no finite limiting value. 

If branch cuts which give boundary-layer formation and inertial oscillations 
are neglected, the inversion of ( 2 2 )  is 

F(5, T )  = i - i{ 1 - exp [ - E-*(h + i/A) (1 - 151 )]} exp [sp 71. (28 )  

The form of F is identical to that found by Loper & Benton (1970, equations 
(54) and (55)). Therefore, the fluid visually appears to spin-up in the same 
manner whether the plates are conductors or insulators, provided the magnetic 
diffusion regions are thick during the spin-up phase. However, the spin-up 
time, which is just the negative reciprocal of sP given by ( 2 6 ) ,  is significantly 
shorter in the case of conducting plates whenever a2$ > 1 + a. 

The strength of the coupling afforded by the conductance of the boundaries 
is measured by the azimuthal magnetic field perturbation at  the fluid-plate inter- 
face at 6 = 1, 6 = d / L .  The dimensionless electric current crossing the interface 
is twice the azimuthal magnetic field at that point (Benton 85 Loper 1969, 
equation (10)). In virtue of (23), it follows that 

J, = 2 Im [ N ( d / L ,  T ) ]  = 2$(1+ #E*)-l exp (sP 7 ) .  (29) 

This coupling current is zero for insulating plates ($ = 0) .  It grows linearly with 
plate conductance until it eventually becomes limited by the finite conductance 
of the fluid, reaching a maximum of (2E-*) as # --f co. 

The remainder of this section is devoted to determination of the range of para- 
meters a and $ for which (a) spin-up is slow or rapid compared with a period of 
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revolution and ( b )  spin-up is accomplished primarily by ‘Ekman suction ’, by 
electric currents generated within the Ekman-Hartmann boundary layers or by 
electric currents generated within the bounding plates. 

The rapidity of spin-up is easily determined from (26 ) .  If Isp( < O(1) spin-up 
is comparatively slow, whereas it is rapid if Isp[ > O(1). The line in the (a, $) 
plane dividing the two domains satisfies 

To determine the dominant spin-up mechanism, expressions for the various 
forces acting to spin the fluid up must be obtained. Apart from viscous terms, the 
imaginary part of (3) is 

V ,  = - 2 U +  2a2E*B,. (30) 

Thus the time rate of change of the azimuthal velocity equals the sum of the 
non-magnetic body force ( -  2 U )  and the magnetic body force (2a2E*Bc).  
The ratio of these forces may be calculated using ( 2 ) ,  ( l l ) ,  (22) - (25) ;  it is found 
to be 

(31) 
2a2 E* B,  - $h2( 1 - $*E) + 2$012h2( 1 + $E*) - 2 ~ 4 $ h  - 

- 2 u  (1 + $E*)2 

If this ratio is less than unity, spin-up is accomplished primarily by Ekman 
suction. If it is greater than unity, electromagnetic forces are dominant, and the 
origin of the electric currents causing spin-up (i.e. within the Ekman-Hartmann 
boundary layer or the boundaries) may be found by inspection of the numerator 
of (31). Obviously if a = 0, the ratio is zero and only non-magnetic forces act. 
The line dividing the two domains in the (a, $) plane is given by setting the ratio 
equal to unity. 

The five possible domains in the (a, $) plane are shown in figure 2 .  The para- 
meter a is a measure of the strength of the imposed magnetic field and $ is a 
measure of the boundary conductance. Within domain (i), spin-up is slow com- 
pared with a period of revolution and is accomplished primarily by the action of 
Ekman suction as described by Greenspan & Howard (1963). Note that if 
a < O(E*), magnetic effects are never important, regardless of the magnitude of 
4. Within domain (ii) spin-up is more rapid than in (i) but still is slow compared 
with a period of revolution. Electric currents generated within the Ekman- 
Hartmann boundary layer now induce spin-up as described by Loper & Benton 
(1970) .  Within domain (iii), spin-up is slow, though more rapid than in (i), 
and is induced primarily by currents generated within the boundaries. Within 
domains (iv) and (v), spin-up is rapid compared with a period of revolution and 
is induced by Ekman-Hartmann boundary-layer currents (domain (iv)) or by 
boundary currents (domain (v)). 

Equation ( 2 8 )  for the fluid velocity function P was obtained by neglecting the 
branch cuts of ( 2 2 )  which represent boundary-layer formation. Benton & Loper 
(1970)  found that the formation time for the Ekman-Hartmann boundary layer 
is 2(1  + a 9 4  (see their equation (70)). If the spin-up time is greater than the 
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boundary-layer formation time, (28 )  should be complete to dominant order. 
This is the case within domains (i), (ii), (iii) and (iv). However, within domain (v), 
both spin-up time and boundary-layer formation time are of the order a-2. For 

(v) Rapid, 
boundary current 

Y 

2 
3 

( i )  Slow, Ekman suction 

1 -  
4 

FIGURE 2. Spin-up domains for thick magnetic diffusion layers &, 9 and E measure mag- 
netic field strength, boundary conductance and fluid viscosity, respectively. (EHL is 
Ekman-Hartman boundary layer.) 

the range of a and $in domain (v) Coriolis forcesare unimportant and (22)  reduces 
to 

- 
F(5,s )  = - - i 

s 
i(1. - exp [ - E-* (2a2 + s)*(1- 151 )I} 

s + 2a2 q5E* (1 + $E*)-1 

With the aid of Campbell & Foster (1948, 0 805.3), the inversion is found to be 

The boundary-layer functions are now more complicated but the characteristic 
decay time is still ( - l/sp); the spin-up is still rapid. Also the dominant mechanism 
of spin-up is still boundary currents. 



Hydromagnetic spin-up 619 

4. Magnetic diffusion regions thin during spin-up 
Assume now that the magnetic Prandtl number S is sufficiently large that the 

magnetic diffusion regions diffuse only a short distance compared with the plate 
separation distance during the spin-up phase. Roughly speaking, this is the case 
if 

S B Er,. (32) 

To restrict attention to the range of 6 of greatest physical interest as well as to 
simplify the subsequent mathematics, we assume 

6 < O(1). (33) 

Since the present case of thin magnetic diffusion regions is much more compli- 
cated than that of thick considered in the previous section, it is expedient to 
confine attention to the range of parameter space (to be determined aposteriori) 
for which spin-up is slow; accordingly we assume 

r8 1 and Is1 < 1. (34) 

The two conditions (32) and (34) give 6 9 E .  Assumptions (32)-(34) allow the 
denominator function D, defined by (la), to be expressed as 

D = 16( 1 + a4)*Eds[l + (p+ l/p)$S*s* + (1 + a4)*$26s] 

+ 16a2$(1+a4)*[2+ (p+ l/P)#S*s*] 

where p = [a2 + (1 + ~ 4 ) * ] * .  (36) 

Equation (35) may be checked in several limits: 
(a)  If a = 0, D = 0 at s = -E* in agreement with Greenspan & Howard 

( b )  If  q5 = 0, D = 0 at s = -pE* in agreement with Loper & Benton (1970). 
(G) If 6 = 0, D = 0 at s = -E&(p+ 2a2#) in agreement with Loper (1970a). 
The denominator function given by (35) is a polynomial in s* with real co- 

efficients. Therefore it has zeros (which yield the poles of F, N, Nand P )  either on 
the real axis or in conjugate pairs. In  each of the limit checks above, the spin-up 
pole is located on the negative real axis, indicating a negative exponential decay 
to the final steady state. However, for certain ranges of the parameters (e.g. 
a = O(l ) ,  I$2Ssl = O(1)) the terms in (35) involving s4 are important. This 
means that zeros of D occur in conjugate pairs, not on the real axis, and branch 
cuts contribute to the inversion. This suggests that the spin-up will have an 
oscillatory behaviour and the fluid will, at  some time during the spin-up process, 
be rotating significantly faster than the plates! (In contrast, Greenspan & 
Howard (1963) found inertial oscillations of very small magnitude in a rotating 
non-conducting fluid.) Elucidation of this curious phenomenon is one of the 
purposes of this section. 

(1963). 

- - -  
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Despite the simplifications afforded by (32)-(34), the inversion of (lo)-( 13) 
is still prohibitively complicated owing to the form of the simplified denominator 
function (35). Therefore, attention will be restricted further to two special cases 
for which the analysis is relatively simple: 

Case I, (l+a)$64lsBI < 1; (37 )  

Case 11, (l+a)$SysBI > 1. (38) 

The first case demonstrates the influence of plate conductance in decreasing 
the spin-up time without exciting any oscillations. This repeats in essence the 
analyses of Loper (1970~) and the previous section. The second case illuminates 
the effect of large plate conductance and thin magnetic diffusion regions. This 
case yields oscillatory spin-up.? 

Case I (l+a)$6ilstl < 1. (37) 

In  this case D = 0, where 

SP = - E3(/3+ 2a2$)+ O[(1+ a)a3$6StE4] 

F(C, T )  = i - i exp (t~p~){l - exp [ - E-J(P+ i/P) (1 - 151)]). 

(39) 

and, to dominant order, the inversion of from (lo) ,  is 

(40) 

This solution is in agreement with (28) for $E4 < 1 and with (27) of Loper 
(1 970 a). 

The velocity within the magnetic diffusion segions is small, of order 

a2$%6fEt < 1. 

Assumptions (32) and (37) are satisfied if 

$2S 6 O(1) and $a2E4 < 1. 

In this case, the fluid spins up in a manner described in $ 2  of Loper & Benton 
(1970) for ET, < 6, the only difference being an additional electric current drawn 
into the conducting boundaries which increases the coupling between fluid and 
boundary. 

Case I1 (l+a)$S+tI > 1. (38) 

In effect, this limit is equivalent to the limit 4 -+ co; the expressions below are 
independent of $. In this limit, the dominant order expression for 3 (6, s) simpli- 
fies to 

where b3 = ES-I(P+ 1//?)2(1+a-4)-1.  (42) 

t The inversion may be accomplished for the case a < 1, also. This roughly represents 
the transition between cases I and 11. This case is not presented because it is relatively 
complicated, lengthy and unilluminating. 
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In  order that spin-up be slow, b must be small compared with unity. Also, 
it is necessary to suppose that a is sufficiently large that the present spin-up 
mechanism is more effective than the non-magnetic spin-up mechanism of 
convergence of fluid into the Ekman boundary layers. This requirement limits 
a to the range 

Condition (43) is not overly restrictive inasmuch its it admits values of 01 both 
much greater than and much less thanunity. 

It is noteworthy that (41) admits significant velocities within the magnetic 
diffusion regions during spin-up. In  fact, if a % 1, the magnetic diffusion regions 
satisfy the viscous boundary conditions and the Ekman-Hartmann boundary 
layers are no longer necessary. In  this extreme (4, a --f co) currentsflowing radially 
inward within the magnetic diffusion regions interact with the axial applied 
magnetic field to produce a strong hydromagnetic body force in the azimuthal 
direction. This body force causes the fluid within the magnetic diffusion regions 
to rotate with the speed of the plates, obviating the need for Ekman-Hartmann 
boundary layers. 

Equation (41) may be inverted but the result is too cumbersome to be of 
much use. Consider instead the radial and azimuthal velocities outside both 
layers. From (lo), the dominant real and imaginary components of Pare 

(1 9 )&E) < a8 < 6E-1( $ 1). (43) 

This may be directly inverted using residues and contour integration to yield 

Uo(r)  = - gb exp ( - 4br) cos (ibr43) - (b/,/3) exp ( - 4br) sin (4br43) 

+ ( b / n )  1 t4( I + exp ( - brt2)d5 (45) 
0 

and 

V0(7) = 1 -4exp ( -4br)  cos (ih-43) + (Z/7r)IOa E2(1 +C6)-lexp ( -E2br )d [ .  (46) 

The radial velocity U, and the azimuthal velocity V, are plotted versus time 
in figure 3. The flow is geostropic, i.e. 

dV0/dr + zu, = 0 

in the inviscid current-free core. At the instant the fluid has spun up (br = 1.65 
in figure 3) the radial velocity is still 70 % of its maximum value. Consequently, 
the fluid overshoots its final spin-up value by approximately 30% for br M 3. 
In  other words, the fluid actually spins faster than the plates during part of the 
spin-up phase. Also, it in interesting that the azimuthal velocity approaches its 
final steady value from above; that is, Vo(r)  > 1 for l / b  < r < 00. 

The system responds to the initial perturbation in a manner characteristic 
of under-damped mechanical systems. In  the present case, the inertia of the 
system appears to be provided by the flow in meridional planes, the restoring 
force by the pressure gradient and the dissipation by resistivity of the magnetic 
diffusion regions. 
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In the non-magnetic spin-up problem considered by Greenspan & Howard 
(1963), the meridional circulation is coupled to the viscous Ekman boundary 
layers and fluid viscosity strongly inhibits inertial oscillations. Similarly, in the 
insulating boundary problem of Loper & Benton (1970), the circulation is 
coupled to two dissipative mechanisms, viscous and resistive, which prevent 
significant oscillations from occurring. In  the present problem, if a and q5 are 
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FIUURE 3. Radial (dashed line) arid azimuthal (solid line) perturbation velocities for thin 
magnetic diffusion regions and large boundary conductance. 

sufficiently large, viscosity of the fluid plays a negligible role in the spin-up 
process. Also if q5 is very large, electrical resistance within the plates is negligible. 
If the magnetic diffusion regions are thick during spin-up as in $3, the resistivity 
of the fluid is sufficiently strong to produce only negligibly small oscillations. 
On the other hand, if the magnetic diffusion regions are thin during spin-up, 
resistivity of the fluid is low enough that the system becomes underdamped and 
significant oscillations of the fluid may occur. This mode of spin-up cannot be 
predicted from the corresponding single plate analysis of Loper (19704. 

Oscillatory spin-up of a contained rotating fluid is not uniquely a hydro- 
magnetic phenomenon. The spin-up of a fluid bounded axially by anisotropic 
porous media also exhibits oscillations if the resistance to flow in the azimuthal 
direction is much greater than that in meridional planes. In  this case, the 
anistropic porous media play the role of the magnetic diffusion regions but the 
inertia is still provided by the meridional flow. The conceptually simpler, non- 
magnetic oscillatory spin-up is currently under investigation, both analytically 
and experimentally, by G. Buzyna and the author. 
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